一步步掌握大语言模型(LLM)工程实战:
Ahmad Osman 分享了一系列项目,每个项目专注一个核心概念,真实动手体验,深刻理解背后原理——从分词(词元化)到采样策略,从注意力机制到长上下文处理,再到微调、量化和推理优化,内容全面且系统。
主要项目亮点:
- Tokenization & Embeddings:自己动手做字节对编码(BPE),训练子词词汇,制作token可视化工具,比较one-hot和学习型embedding的差异。
- 位置编码:演示经典正弦函数编码、学习型、RoPE、ALiBi四种方式,动画展示位置编码的本质。
- 自注意力与多头注意力:从单token点积注意力写起,扩展到多头,验证因果遮罩效果。
- Transformer堆叠与QKV拆解:搭建单层和多层Transformer,拆解Q、K、V矩阵,实验不同组合的影响。
- 采样参数调优:交互式调整温度、top-k、top-p采样,观察输出多样性与熵的变化,揭示温度为0带来的重复现象。
- KV缓存加速推理:实现缓存机制,量化速度提升,制作缓存命中可视化,分析内存占用。
- 长上下文技巧:滑动窗口注意力、内存高效重计算,测量困惑度随上下文长度变化,找到“上下文崩溃”点。
- 专家混合(MoE):实现两专家路由层,动态路由tokens,统计专家利用率,模拟稀疏与密集计算节省FLOPs。
- Grouped Query Attention:改写多头注意力为分组查询结构,测评速度与延迟。
- 归一化与激活函数:手写LayerNorm、RMSNorm、SwiGLU、GELU,消融实验观察对训练/测试损失影响。
- 预训练目标对比:玩转掩码语言模型、因果语言模型、prefix语言模型,绘制损失曲线,比较学习速度与生成样本特性。
- 微调、指令调优与RLHF:小数据集微调;任务前缀指令调优;用PPO训练奖励模型,绘制奖励提升。
- 规模定律与模型容量:训练不同大小模型,绘制损失与模型规模关系,评估训练效率,推估极端小模型表现。
- 量化实操:实现PTQ和QAT,导出GGUF/AWQ格式,评估精度下降。
- 推理与训练框架迁移:HuggingFace模型移植到Deepspeed、vLLM、ExLlama,横向性能对比。
- 合成数据实验:生成玩具数据,加入噪声、去重,制作评估集,比较真实数据与合成数据的学习曲线。
核心建议:
- 理论别停留太久,边写代码边调试边消融,用图表和实验结果说话,甚至可以幽默调侃自己的图表。
- 每完成一个项目,分享心得,积累真实经验。
- 未来的你,会感谢现在努力的自己。
这是一条通向LLM工程师之路的实操路线,既系统又接地气,非常适合想要深入理解和实践大模型技术的同学。
原文链接:x.com/TheAhmadOsman/status/1975783287961313362/history
---
附言:真正的理解来自“做中学”,单纯用API无法触及的细节和难点,都在这系列项目中得到锻炼。推荐给所有想从理论走向实战的AI工程师和研究者!