解:第一步:微分方程基本变形:
dy/dx=(2x³+3xy²+x)/(3x²y+2y³-y),右边分母分子分别提取公因式x,y,则:
dy/dx=x(2x²+3y²+1)/y(3x²+2y²-1),将右边提出的x,y移动到等号左边。
ydy/xdx=(2x²+3y²+1)/(3x²+2y²-1),左边凑分分别到dy、dx中,得:
dy²/dx²=(2x²+3y²+1)/(3x²+2y²-1)。
设:
(2x²+3y²+1)/(3x²+2y²-1)
=[2(x²+m)+3(y²+n)]/[3(x²+m)+2(y²+n)].
由对应项系数相等得方程:
2m+3n=1,且3m+2n=-1。解方程得m=-1,n=1.
代入微分方程得:
dy²/dx²=[2(x²-1)+3(y²+1)]/[3(x²-1)+2(y²+1)].

设:u=(y²+1)/(x²-1),则:
u(x²-1)=y²+1,两边求全微分得:
(x²-1)du+udx²=dy²
dy²/dx²=u+(x²-1)du/dx²,回代微分方程得:
u+(x²-1)du/dx²
=[2(x²-1)+3u(x²-1)]/[3(x²-1)+2u(x²-1)]
=(2+3u)/(3+2u)。

用分离变量积分法,对变形后的微分方程积分如下:
(x²-1)du/dx²=2(1-u²)/(3+2u)
(3+2u)du/(1-u²)=2dx²/(x²-1)
3∫du/(1-u²)-1*∫d(1-u²)/(1-u²)=2∫dx²/(x²-1)
3/2ln|(1+u)/(1-u)|-1*ln|1-u²|=2ln|x²-1|+ C₁
[(1+u)/(1-u)]³/(1-u²)²=c₂(x²-1)⁴.
(1+u)*(1-u)^(-5)=c₂(x²-1)⁴。

(1+u)=c₂(x²-1)⁴*(1-u)⁵.
[(x²+y²)/(x²-1)]
=c₂(x²-1)⁴*[(x²-y²-2)/(x²-1)]⁵,
即:(x²+y²)=C(x²-y²-2)⁵。